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Natural selection rejects with variable strength, mutations reducing the individual’s

capability to survive and reproduce. Evolutionary theory predicts that mutations

producing disease will be under strong selective constraints. Selective strength at the

codon level will determine if mutation frequency will increase, decrease or change

randomly during evolution. This strength finally serves in the prediction of

nonsynonymous single nucleotide polymorphisms (nsSNPs) producing disease in

humans. By using comparative genomics data andmaximum likelihood phylogenetics

approaches we demonstrate that mutations on residues showing low rates of evolution

are significantly associated to disease and not to human genetic polymorphisms.

Introduction

Since the earlier works of JBS Haldane on sickle-cell anae-
mia, biologists recognize the power of natural selection on
genetic variation and its association to human diseases.
Further developments demonstrated that most of the ge-
netic changes occurring in a population do not affect the
phenotype, or more accurately, the reproductive capacity
(fitness) of the genotypes carrying genetic variants
(Kimura, 1983). Recently, 3.1 million single nucleotide
polymorphisms (SNPs) were found in the human genome
(IHMC, 2007) and a major goal on biomedical research is
to understand the role of the common genetic variants in
susceptibility to common diseases in human populations.
See also: An Evolutionary Framework for Common
Disease; Single Nucleotide Polymorphism (SNP)

A worldwide survey on the genetic variation in genes
associated to common human diseases concluded that
SNPs occur at a frequency of 1 out of 346 bp and are
roughly equally divided between synonymous and non-
synonymous changes (Cargill et al., 1999). As approxi-
mately, two-thirds of random mutations in coding

sequences alter an amino acid, the fact that nsSNPs com-
promise one half the total SNPs, implies strong selection
against amino acid altering changes. The force of selection
is also evident when comparing nsSNPs causing non-
conservative amino acid substitutions with those causing a
conservative change. Nonconservative nsSNPs represent
only 36% of all nsSNPs, whereas randomly distributed
mutations would be expected to produce a higher propor-
tion (52%) of nonconservative changes (Cargill et al.,
1999). Currently, the NCBI SNP database (dbSNP, built
127) collects 5 689 286 validated human SNPs out of which
78 845 are nonsynonymous coding SNPs (nsSNPs). That
means that about only 1% of the human validated SNPs
could probably affect gene function. One of the most im-
portant questions in human genetics is to deduce which of
these genetic variants are functionally relevant for human
health. In other words, which of these 1% of genetic
variants are targets of selective or neutral evolutionary pro-
cesses in the human genome. Far from the theoretical
interest of this enquire, this prediction would help in the
genotyping process of SNPs probably associated to disease
in classical genotype–phenotype association studies in hu-
man populations. See also: Evolution: Neutralist View;
Mutations in Human Genetic Disease
In this article, I will overviewmany of the main methods

developed to predict the functional properties of nsSNPs in
the human genome. I will insist that most of these methods
are based on features derived from protein structures and/
or the evolutionary conservation which represent proxies
to infer its cost on fitness. Next, I will focus on the measure
and description of the selective constraints associated to
nsSNPs in the human genome as a direct way to search for
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selective pressures acting at the codon level.Wewill see that
this evolutionary approach based on the maximum like-
lihood (ML) estimation of evolutionary rates evaluates the
fitness of each nsSNPs at the codon level at the same time
that improves previous attempts todifferentiate deleterious
alleles from neutral polymorphisms in the human genome.
Finally, I will present the PupaSNPs suite tool where all the
predictions for nsSNPs on coding sequence are collected
for the human genome. See also: Amino Acid Substitu-
tions: Effects on Protein Stability; Molecular Evolution:
Rates

Functional Prediction of nsSNPs

The earliest studies on the functional prediction of human
nsSNPs were pioneered by Sunyaev et al. (2000, 2001),
Chasman and Adams (2001), Wang and Moult (2001),
Miller and Kumar (2001), Saunders and Baker (2002) and
Santibáñez Koref et al. (2003). A rough description of the
main publications is shown in Table 1.

Sunyaev et al. (2000) estimated that approximately 70%
of disease-causing mutations occur at structurally and
functionally important sites with well-defined properties
such as less than 5% of solvent accessibility, sometimes
located in b strands, active sites, disulfide bonds or evolu-
tionary conserved sites.Moreover, they found that most of
the allelic variants map to the same structurally and func-
tionally important regions of the proteins suggesting that
many of them probably have negative effects on the phe-
notype. In a subsequent study, Sunyaev et al. (2001) esti-
mated that approximately 20% of the human nsSNPs
affect protein function and that an average human geno-
type carries about 2000 of such nsSNPs. They observed
that the majority of disease-causing mutations were at low
frequencies in human populations (1–20%), which was
considered as a validation of their method.

Wang and Moult (2001) found that by far the largest
proportion (83%) of disease-nsSNPs affects protein sta-
bility, 5% maps on binding sites and approximately 10%
correspond to cases where their three-dimensional (3D)
structural model gives a false-negative result. They pre-
dicted that 70% of nsSNPs studied in hypertension, car-
diovascular, endocrinology and neuropsychiatric diseases
correspond to cases of neutral polymorphisms whereas the
remaining 30% affect the stability of the protein. Alterna-
tively, Chasman and Adams (2001) used a combination of
statistical methods to define structural and evolutionary
parameters with significant association to disease. From
the knowledge of the effects of about 6000 mutations from
the Lac repressor and the T4 lysozyme protein they
estimated that approximately 26–32% of nsSNPs have
deleterious effects on human protein function.

Although most of these studies mainly focused on struc-
tural parameters of proteins, Miller and Kumar (2001) ex-
plicitly studied the role of the evolutionary conservation in
the functional predictionof nsSNPs emphasizing the riskof
using concepts like conservation profile and similarity

cutoff percentage values used in the previous models. They
pointed out that evolutionary data cannot be treated as
independent observations for use in statistics because they
share a nonrandom structure of dependence defined in the
historical relationships of the species (Felsenstein, 1985).
That is, model approaches based on similarity could over-
estimate the variability of a given site if an identical residue
appears inmultiple species due to phylogenetic constraints.
Moreover, the alignment profile score could underestimate
the amount of variation in the sequences using highly con-
servative cutoff values. Therefore, using an explicit method
of phylogenetic reconstruction on seven human disease
proteins, Miller and Kumar (2001) demonstrated that hu-
man nsSNPs mutations are overabundant at amino acid
positionsmost conserved throughout the long-termhistory
of metazoans. Human polymorphic replacement muta-
tions and silent mutations were found randomly distrib-
uted across sites with respect to the level of conservation of
amino acid sites within genes. They concluded that disease-
causing amino acid changes are those that are not observed
among species probably because they are not accepted by
natural selection in long-term evolutionary time.
In the same vein, an explicit statistical phylogenetic

model was developed by Santibáñez Koref et al. (2003).
The method indicates the probability of a given mutation
being pathological considering the evolutionary conserva-
tion and the variability associated to each protein. Al-
though the method they developed was outstanding in the
fields of comparative genomic and human health, the nec-
essary calibration of the model for each human protein is a
major drawback for its use in large-scale analysis. See also:
Comparative Genomics
Saunders and Baker (2002) evaluated the behaviour of

alternative variables in the functional prediction of nsSNPs.
When using a combination of evolutionary and structural
variables, they concluded that the prediction is better than
when a single kind of variable is used on its own. When
fewer than5–10homologues areavailable, they emphasized
that the prediction of deleterious mutation should include
structural information, suggesting that the evolutionary
data is more informative than the structural data when a
high number of sequences are used for prediction. See also:
Homology in Character Evolution
Finally, Arbiza et al. (2006) introduced an explicit evo-

lutionary measure of selective pressures at a codon level as
a direct functional predictor of nsSNPs. UsingMLmodels
to estimate the well-established ratio (o) between nonsyn-
onymous to synonymous rates of evolution in mammals,
they concluded that codons with o50.1 maps residue
where mutations producing disease are frequent in human.
See also: Synonymous and Nonsynonymous Rates

Methods and Web Resources

Most of the methods used for the functional prediction of
nsSNPs are characterized by the use of the structural (ST),
sequence (SQ) and/or functional (FN) information of
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Table 1 Studies analysing the main variables associated to the functional prediction of nsSNPs

Publication Parameters and statistics Disease mutations Control/prediction dataset Main conclusions

Sunyaev et al. (2000) Structural features such as

solvent accessibility, secondary

structure, active sites and

disulfide bonds were combined

with conservation features

taken from homologous

sequences. w2 statistical
analyses compare nsSNP

distributions

Disease dataset: 551 nsSNPs

taken from Swiss-Prot, OMIM

and PDB. Allelic variation

dataset: 86 nsSNPs taken from

Swiss-Prot, OMIM, HGBASE,

Chakravarti dataset and PDB

Homologues dataset 1: 225

nsSNPs taken from close

relatives of disease genes.

Disease-causing mutations

often affect intrinsic structural

features of proteins.

Approximately 70% of the

disease-causing mutations are

located in sites likely to be

structurally and functionally

important. The fraction of

polymorphic sites located in

structurally and functionally

important regions was 45%,

which is significantly higher

than the 24% in the case of the

interspecies variation. Allele

frequency distribution suggests

that variants in structurally

important sites are not

selectively neutral

Homologues dataset 2: 261

nsSNPs taken from close

relatives of human allelic

variation dataset genes

Chasman andAdams (2001) Sixteen features contribute to

the model. Among the

continuous variables are those

such as residue accessibility,

relative residue entropy and

relative residue B-factor.

Among the categorical factors

such as unusual AA, unusual

AA by class and rare AA. Turn

or helix breaking. Buried

residues, conserved position,

etc. Phylogenetic entropy

deduced from HSSP files.

Statistical analyses use

ANOVA F-statistic for

continuous and w2 test for
categorical variables.

Probabilistic models with

combination of variables was

used to predict functional

characteristics of nsSNPs

Lac repressor: � 4000 nsSNPs SNPs survey from Case

Western Reserve University &

Whitehead cSNP databases

The variables used in the study

are strongpredictors of an effect

on function for lac repressor

and lysozyme. They estimate

that approximately 26–32% of

nsSNPs probably affect the

function of human proteins

T4 lysozyme: � 2000 nsSNPs

(Continued )
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Wang and Moult (2001) 3Dmodel structures of proteins

were built using comparative

structural modelling. Defined

rules for assessing the effects of

nsSNPs based on protein

stability, ligand binding,

catalytic position, allosteric

regulation and post-

translational modifications

SNPs disease set: 23 proteins,

262 nsSNPs, derived from NIH

dbSNP, HMDB, PDB

SNP population set: 22

proteins, 42 nsSNPs, derived

from Case Hypertension

candidate genes and the

Whitehead cSNP databases

(cardiovascular,

endrocrinology and

neuropsychiatric diseases),

PDB

83% of disease mutations affect

some of the 12 variables

associated to protein stability.

According to the features used

in the model, 70% of the SNP

population set has no effect on

protein function being

selectively neutral

Miller and Kumar (2001) Evolutionary analysis of

nsSNPs associated to human

disease. Phylogenetic tree

reconstruction of eukaryote

genes and amino acid relative

frequencies change

Genetic variation (1004

nsSNPs) producing disease

from seven disease human

genes. Disease (10 262)-

associated mutations obtained

from HGMD

Polymorphic (50 nsSNPs) and

silent variation (94 nsSNPs)

taken from the same seven

disease-associated genes

Human replacement mutations

resulting in disease are

overabundant at amino acid

positions most conserved

throughout the long-term

history of metazoans. Human

polymorphic replacement

mutations and silent mutations

are randomly distributed across

sites with respect to the level of

conservation of amino acid sites

within genes. Disease-causing

amino acid changes are of types

usually not observed among

species

Saunders and Baker (2002) Structural and evolutionary

features selected to test their

relevance in the nsSNP

prediction problem. Among

them, percentage of solvent

accessibility area, normalized

B-factor, residue burial,

Sunyaev structural rules,

Blosum62 relative frequencies,

normalized size entropy and

SIFT predictions

Deleterious nsSNPs mutations

from Lac repressor: 1166, T4

lysozyme: 175 and HIV-1: 159;

adding 1500. 191 disease alleles

taken from OMIM and Swiss-

Prot40

Neutral nsSNPs mutations

from Lac repressor: 2255, T4

lysozyme: 1340 andHIV-1: 111;

adding 3706. 87 neutral alleles

taken from OMIM and Swiss-

Prot40

Methods for deleterious

mutation prediction should

include structural information

when fewer than 5–10

homologues are available. Ab

initio predicted structures may

be useful in such cases when

high-resolution structures are

unavailable and few

homologous sequences exist

Table 1 Continued

Publication Parameters and statistics Disease mutations Control/prediction dataset Main conclusions
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Santibanez Koref et al.

(2003)

The method describes a formal

statistical framework to assess

nsSNPs using phylogenetic

analysis of mammal genes,

codon sequences and

physicochemical amino acid

properties

The TP53 mutation database 1047 mutations associated to

interspecies variation

A Z-score indicates the

probability that a given

mutation is pathological

considering evolutionary

conservation and variability

1038 alleles containing nsSNPs

Arbiza et al. (2006) Evolutionary analysis of

nsSNPs associated to human

disease. Codon substitution

model, Ensembl-Database

orthologous relationships. Site-

specific maximum-likelihood

models (o5 dN/dS) run in the

codeml program from PAML.

Mammal and vertebrate trees

The TP53 mutation database

containing 18 145 mutations

43 genes summing up to 8970

mutations derived from IDR,

MeCP2 and COSMIC

databases

The Kolmogorov–Smirnov test

differentiates selective pressures

where mutations associated to

disease are more frequent than

mutations not associated to

disease. Selective pressures on

nsSNPs with o50.1 are

statistically associated to

disease
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proteins. All of them use homologous sequences (many
of them without a formally differentiating orthology
and paralogy) since the computation of the conservation
properties or scores requires a comparison with other re-
lated proteins commonly found by blast search family
methods.

Table 2 shows 12 of the most popular bioinformatic tools
for the functional prediction of nsSNPs. These tools use
alternative classification methods to decide which of the
nsSNPsmay have deleterious or neutral phenotypes.Aswe
will see they make use of various approaches including
cutoff values (SIFT, PANTHER, SNPeffect), decision
trees (POLYPHEN, LS-SNP) or machine learning meth-
ods such as neural networks (NNs) (PMUT, SNAP), sup-
port vector machines (SVMs) (SNP3D, PhD-SNP, SAP)
and random forests (nsSNP Analyzer). See also: Neural
Networks; Phylogenetic Footprinting; Proteins: Muta-
tional Effects in

Cutoff value-based methods

The SIFT (sorting intolerant from tolerant, http://
blocks.fhcrc.org/sift; Ng and Henikoff, 2001, 2003) algo-
rithm takes a query sequence and uses multiple alignment
information to predict tolerant and deleterious substitu-
tions for every position of the query sequence. Once the
multiple alignment of sequences is doneSIFT computes the
PSSM (position-specific substitution matrix) containing
individual probabilities for each amino acid of the protein
being changed for any other of the 20 amino acids. Based
on the frequencies with which the changes are observed in
the alignment, SIFT provides the normalized probabilities
for all the possible substitutions at each position of the
alignment. Substitutions at each position with normalized
probabilities less than a chosen cutoff are predicted to be
deleterious and those greater or equal to the cutoffvalue are
predicted to be tolerant.

Panther (http://www.pantherdb.org/tools/csnpScore-
Form.jsp; Thomas and Kejariwalet, 2004) is a library of
protein families and subfamilies derived by the use of
Hidden Markov Model (HMM) techniques indexed by a
vocabulary of more than 500 biological functional terms.
The Panther library contains predictions of the effects of
nsSNPs on protein functions. Panther (Thomas et al.,
2003) uses the alignment and tree of each family and sub-
family to compute the position-specific evolutionary con-
servation (PSEC) score. This score works as a ‘functional
likelihood’ value of amino acid substitution in a protein
family. The authors calibrated the scores and concluded
that alleles with a cutoff value smaller than 23 (subP-
SEC523) correspond to deleterious mutations.

SNPeffect (http://snpeffect.vib.be/; Reumers et al., 2006)
is a database containing predictions from sequence and
structure-based bioinformatic tools of nsSNPs. SNPeffect
analyses the effect of SNPs on three categories of functional
properties: (1) structural and thermodynamic properties
affecting protein dynamics and stability, (2) the integrity of
functional binding sites and (3) changes inpost-translational

processing and cellular localization of proteins. The bio-
informatic tools and databases used for such predictions are
FOLDX, TANGO, AmyScan, PROF, Hsp70, CSA, Phos-
phobase, O-GlycoBase,N-terminal rule and PASubcellular
(see references in Reumers et al., 2006). SNPeffect pro-
vides alternative ranges of values being considered disease-
associated or neutral.

Decision tree-based methods

Polyphen (polymorphism phenotyping, http://coot.embl.
de/PolyPhen/; Ramensky et al., 2002) is a sequence and
structural based algorithm for the functional prediction of
nsSNPs. First, Polyphen characterizes the substitution
sites at a structural level by looking for information in the
human section of the SWALL database (a comprehensive
protein sequence database that combines the high quality
of annotation in Swiss-Prot and all the protein-coding se-
quences from the EMBL nucleotide sequence database).
Second, Polyphen computes the PSIC (position-specific in-
dependent counts) matrix scores. Elements of the matrix
(profile scores) are logarithmic ratios of the likelihood of
finding a given amino acid at a particular position to the
likelihood of finding this amino acid at any position (back-
ground frequency). Polyphen computes the absolute value
of the difference between profile scores of both allelic var-
iants in the polymorphic position. Big values for this differ-
ence may indicate that the studied substitution is rarely or
never observed in the protein family. Third, mapping
amino acid substitutions on proteins with recognized ter-
tiary and quaternary structure, the algorithm searches for
structural changes and contacts sites with other proteins.
Finally,with all the information, Polyphenuses empirically
derived rules to predict that an nsSNP is probably dam-
aging, possibly damaging, benign or unknown.
LS-SNP (large-scale human SNP annotation, http://

alto.compbio.ucsf.edu/LS-SNP/; Karchin et al., 2005) is a
database collecting results from a pipeline that maps
nsSNPs onto protein sequences, functional pathways and
comparative protein structure models, and predicts posi-
tions where nsSNPs destabilize proteins, interfere with the
formation of domain–domain interfaces, have an effect on
protein–ligand binding or severely impact human health.
By integrating information based on sequence, evolution
and structurewith a combinationof knowledge-based rules
and an SVM, LS-SNP predicts positions where amino acid
substitutions destabilize protein structure.

Machine learning based methods

PMUT (http://mmb2.pcb.ub.es:8080/PMut/; Ferrer-Costa
et al., 2005) performs its predictions by retrieving a series of
structural parameters such as volume parameters, second-
ary structure propensities, hydrophobicity descriptors and
sequence potential, amongothers.Comparativedescriptors
come from the scoring mutation matrices (PAM40 and
BLOSUM62) and from the multiple sequence alignment
found by using two iterations of PSI-Blast running over a
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Table 2 Comparison of some of the methods used in the functional prediction of nsSNPs

Methods

Algorithm

features Substitution score Homology Classifcation

nsSNPs functional

prediction

SIFT SQ Multiple alignment of

homologous

sequences and

posterior

computation of

probabilities for each

substitution site

PSSM PSI-BLAST Normalized cutoff value Disease association

based on normalized

cutoff probabilities

( p50.05)

http://blocks.fhcrc.org/sift Swiss-Prot and TrEMBL

POLYPHEN ST Secondary structure,

solvent accessible

area, j-c dihedral

angles and contact

sites inference among

other parameters

PSIC BLAST Decisional tree Categorical: benign,

probably damaging or

possibly damaging

http://coot.embl.de/

PolyPhen/

NRDB

PANTHER FN Panther functional

annotation. HMMs

based. Family tree

subPSEC Family–subfamily

HMMs definition

subPSEC cutoff value Deleterious if

subPSEC523. More

negative values

predict more

deleterious

substitutions

http://www.pantherdb.org/

tools/csnpScoreForm.jsp

SNPs3D ST A total of 15 stability

factors (continuous

and binaries), such as

cavity formation, loss

of disulfide bridge,

crystallographic

temperature and

others contributing to

energy and entropy

PSSM PSI-BLAST Two SVMs (structure

stability and sequence

profile)

A negative SVM score

indicates deleterious

mutations. Accuracy

is significantly higher

when both SVMs

agree

http://www.snps3d.org Swiss-Prot

LS-SNP ST Structural features

from structural

protein modelling

(such as solvent

accessibility, buried

charge and in silico

mutation-violated

spatial restraints) and

amino acid residues

(change in residue

Relative

entropy values

derived from

HMM

PSI-BLAST Decisional tree and SVM Anegative SVM score

indicates deleterious

mutations

http://

alto.compbio.ucsf.edu/

LS-SNP

Swiss-Prot and TrEMBL

and nrNCBI

(Continued )
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volume, charge,

hydrophobicity and

Grantham values)

PMUT ST Secondary structure

location, solvent

accessibility, residue

size, free energy of

water to octanol

transfer and

secondary structure

propensity

Shannon

entropy,

average

mutation

matrix score

and PSSM

(Bolsum62)

PFAM Neural network Pathological index

ranges from 0 to 1

(indexes40.5 signal

pathological

mutations).

Additionally, a

confidence index

ranges from 0 to 9

http://mmb2/

pcb.ub.es:8080/PMut

PSI-BLAST nrSwiss-

Prot and TrEMBL

PhD-SNP SQ Sequence information

taken from a centred

window of 19 residues

from the nsSNP

Transition

frequencies of

wild-type and

mutant

residues

BLAST 2 SVMs (profile and

sequence) in the Hybrid

method

Hybrid SVM predicts

deleterious or neutral

mutations according

to a reliability index

(RI)

http://gpcr2.biocomp.

unibo.it/cgi/predictors/

PhD-SNP/PhD-SNP.cgi

NRDB

SNAP ST Solvent accessibility,

chain flexibility,

sequence information

taken from a window

centred in the nsSNP,

transition frequencies

of wild-type and

mutant triplets, Swiss-

Prot annotations

PSIC-

Blosum62

PSI-BLAST Neural network NN predicts neutral

or nonneutral

mutations according

to an RI and the

associated expected

accuracy

http://cubic.bioc.

columbia.edu/services/

SNAP

SQ PFAM

nsSNP Analyzer ST Solvent accessibility,

environmental

polarity and

secondary structure

PSSM+SIFT

predictions

Structural Random Forest Disease or neutrality

are predicted in

association with the

SIFT cutoff

probability value

http://snpanalyzer.

utmem.edu/

ASTRAL

SAP ST Solvent accessibility,

difference between

wild-type and mutant

structural (3D)

neighbour profiles,

nearby functional

sites, energy model,

number of hydrogen

bonds, disulfide

A slight

variation of

SIFT scores

and

conservation

score

Swiss-Prot SVM Two types of SVM

predictions. One is

based on both the

structural and

sequence information,

the other relies on the

sequence information

only

http://sapred.cbi.pku.

edu.cn

Table 2 Continued
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bonds, disordered

region, aggregation

properties, HLA

family

SNPeffect ST Energetic effects of

nsSNPs, changes in

protein aggregation

or amyloidosis are

evaluated using

FoldX force field,

TANGO and

AnyScan. Active sites

are located by means

of the Catalytic Site

Atlas database.

Subcellular

localization predicted
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nonredundant Swiss-Prot/trEMBL database. PMUT im-
plemented two NNs as predictor engines. Both NNs were
trained with human mutational data. Irrespective of the
NN, the final output is (1) a pathogenicity index ranging
from 0 to 1 (mutations associated with an index above 0.5
are taken as pathological) and (2) an index ranging from 0
(low) to 9 (high) corresponding to the confidence level of the
prediction.

SNAP (screening for nonacceptable polymorphism,
http://www.rostlab.org/services/SNAP/; Bromberg and
Rost, 2007) is an NN-based method that uses a variety of
biophysical characteristics associated to the substitutions,
as well as evolutionary information, to make functional
predictions regardingmutated proteins. The network takes
protein sequences and lists of mutants as input, returning a
score for each substitution. These scores are translated into
binary predictions of effect (neutral/nonneutral), reliability
indices (RIs) and expected accuracy. RIs are indicative of
confidence in prediction,whereas the expected accuracy is a
number of correctly predicted (at a given RI) neutral or
nonneutral samples in the SNAP testing set.

SNPs3D (http://www.snps3d.org/; Yue et al., 2006) is a
server tool which assigns molecular functional effects of
nsSNPsbasedon structure and sequence analysis using two
SVMmodels. The first model (the stability model) is based
on the hypothesis that many disease SNPs affect protein
function primarily by decreasing protein stability. The sec-
ond model (the profile model) is based on the analysis of
homology sequence families related to human proteins.
SNPs3Ddatabase contains the prediction of nsSNPs of the
NCBI dbSNP database. They predicted that approxi-
mately 30% of these mutations are associated to human
diseases.

PhD-SNP (predictor of human deleterious SNP, http://
gpcr.biocomp.unibo.it/~emidio/PhD-SNP/PhD-SNP.htm;
Capriotti et al., 2005) is a sequence-basedmethod using two
different SVM classifiers. The SVM-Sequence based meth-
od use sequence information taken from a centred window
of 19 residues from the nsSNPs. This SVM is coupled to
SVM-Profile trained on sequence profile information in the
Hybrid method. The SVM-Sequence and the Hybrid meth-
ods predict deleterious or neutral nsSNPs according to an
RI. Although PhD-SNP does not make any inference from
structural parameters, it seems to outperform other cutoff-
based value predictors based on sequence, function or
structure such as SIFT or PANTHER.

SAP (single amino acid polymorphism, http://sapred.
cbi.pku.edu.cn/; Ye et al., 2007) is an SVM tool which is
characterized by using, aside from the well-recognized pre-
diction power of variables such as sequence conservation
and solvent accessibility, new biologically informative at-
tributes including structural neighbour profiles, nearby
functional sites and aggregation properties among others.
The newattributes studied by SAPprovide insights into the
mechanisms of the disease association of nsSNPs. SAP-
RED web server requires two PDB format files describing
the structures of the wild-type and variant proteins. For
proteins with no structural information, an alternative

method called SAPRED_SEQmakes the prediction based
on sequence-derived attributes only.
nsSNPAnalyzer (http://snpanalyzer.utmem.edu/; Bao

et al., 2005) uses a machine learning method called Ran-
dom Forest (Breiman, 2001) to classify nsSNPs as delete-
rious or neutral. It uses information from the structural
environment of the SNP, the normalized probability of the
substitution in the multiple sequence alignment and the
similarity between the original amino acid and mutated
amino acid. nsSNPAnalyzer searches for homologous pro-
tein structures since it does not work without structural
information.

Natural Selection and Disease

As we have described earlier, all these methods try to
predict the functional consequences of nonsynonymous
mutations occurring in a protein by means of the use of
different sequence and/or structural parameters. This in-
formation is finally used as a proxy for the definition
of selective constraints posed by natural selection on
the protein site where the nonsynonymous mutations
occurred.
Natural selection shapes the genetic variation of the

population according to the functional role played by the
new mutant that will finally be accepted or discarded from
the gene pool. A common approach to determine the se-
lective pressures acting at amolecular level is the estimation
of the ratio of nonsynonymous to synonymous rates of
substitution (o=dN/dS). An estimation of dN that is sig-
nificantly different from that of dS, provides convincing
evidence of a nonneutral evolutionary process. Codon-
based ML models allow the study of natural selection in a
site-by-site approach thus providing estimates of selection
at a codon level (Yang, 2003). See also: Synonymous and
Nonsynonymous Rates
Here we will show that the estimation of the selective

pressures on a well-known protein model (p53) associ-
ated to human disease (cancer) can be computed at a
codon level using well-known statistics methods of evo-
lutionary biology. These constraints, having worked
throughout millions of years on orthologous sequences,
can be successfully used as a predictor of the pheno-
typic effects of cSNPs. Secondly, we will demonstrate
that nsSNPs with selective strength (o) smaller than 0.1
are frequently associated to human disease (Arbiza
et al., 2006). Finally, in a pure bioinformatics frame-
work, we will see that by using a trained machine learn-
ing algorithm applied on sequence data increases the
likeliness of association to disease (Capriotti et al., 2008).
This information mapped on the database of human
SNPs provides us with a full prediction of all the coding
variation producing disease in the human genome.
This information is currently available at the PupaSuite
server: http://pupasuite.bioinfo.cipf.es (Conde et al.,
2006).
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Mutations and constraints in p53

The p53 tumour suppressor is a 393-amino acid transcrip-
tion factor that activates the transcription of a number of
downstream genes. Structurally and functionally, it can be
divided into five regions: an acidicN-terminal transactiva-
tiondomain (p53TA, residues 1–60), a proline-rich domain
(p53PR, residues 61–97), a hydrophobic DNA (deoxyri-
bonucleic acid)-binding domain (p53DB, 100–300), a
tetramerization domain (p53TR, 320–360) and a basic
C-terminal domain (p53CO, 361–393). The IARC TP53
mutationdatabase collects the largest numberofmutations
in this protein. Figure 1 shows that codon mutation are
scattered throughout the coding sequence, although 96%
of them (17 389/18 135) cluster within the p53DB domain.
Six different ‘mutational hotspots’ (defined by a mutation
frequency higher than 2% of all mutations) have been
identified at residues Arg175, Gly245, Arg248, Arg249, Arg273

andArg282.According to this description, thesemutational
hotspots fall within the p53DB domain, and since they are
structurally relevant to protein function (Cho et al., 1994),
they would be expected to be protected against mutations
by strong purifying selection (Golding, 1994). See also:
Tumour Suppressor Genes

ML adjustment of evolutionary parameters using the
M8(b+o) (hereafter M8) selection model from CodeML
program in PAML (Yang, 2007) suggests that almost
100% of p53 codon sites are constrained under the influ-
ence of purifying selection, and only a minimum propor-
tion of sites evolved with o41. The parameters of the b
distribution suggest that o describes an ‘L-shaped’ curve
over sites, with most sites in p53 being highly conserved.
Posterior probabilities obtained from the empirical Bayes
approach were not significant ( p595%) for any of the
protein residues, suggesting the absence of positive selec-
tion sites (PSS) on p53 protein. When the alternative

sitewise likelihood-ratio method (SLR, Massingham and
Goldman, 2005) is used to fit the selective constraints at the
codon level, the program found 228 codons sites under the
influence of strong purifying selection after correcting for
multiple testing (202 at p50.01 and 26 at p50.05) (see
Arbiza et al., 2006 for a full description of the methods). It
is interesting to notice that this number is higher than the
109 (47.80%) that are, actually, phylogenetically conserved
(which are those generally used in the methods described
previously) and never change in amino acid identity during
evolution. Table 3 summarizes data related to p53 domains,
codons, indels,mutations and statistics. Independent of the
model used to estimate o, p53DB and p53TR domains
showed the highest number of cancer mutations which
were associated with the lowest median and meano values
observed in the analysis. One-tail Kolmogorov–Smirnov
(K–S) tests demonstrated that the p53DB and p53TR
domains have a significantly low o value distribution
( p50.05) in comparison with the rest of the p53 domains.
Although the mean estimation was close to 0.1 in both
domains, the distribution of o values in the p53DB was
lower than in the p53TR domain (data not shown).
In summary, estimates of natural selection acting on p53

coding sites statistically differentiate the relevant func-
tional domains where the prevalence of cancer mutations
are the highest in a protein. This pattern is what would be
expected if relevant functional structures had been con-
strained, during evolution, under strong selective forces
avoiding nonsynonymous changes.

Selective constraints in p53 structure

More than 40 years ago, Zuckerkandl and Pauling (1965)
proposed that a protein sequence will evolve at a rate
primarily determined by the proportion of sites involved
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Figure 1 Distribution of p53 mutations. Mutation frequencies collected in the IARC TP53 R10 database (18 145 nonsynonymous mutations) are plotted

against the protein domains. The DNA-binding (p53DB) domain contains six residues considered mutational hotspots in cancer. Reproduced from Arbiza et al.

(2006), Copyright Elsevier (2006).
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in specific functions. To study this well-supported the-
oretical prediction in p53 residues, we studied the selec-
tive constraints of the core domain in complex with
DNA. By defining three ranges of o values (red: 04 o
40.1, orange: 0.15 o 40.2 and yellow: 0.25 o 40.3),
we labelled residues in the structures. According to the
same expectation residues where neutral or nearly neu-
tral evolution was deduced (labelled green, o 40.30), are
expected not to form part of the relevant functional do-
mains of the protein. See also: Molecular Clocks;
Molecular Evolution: Nearly Neutral Theory; Molecular
Evolution: Neutral Theory

Figure 2a shows the distribution of theoSLR values, on the
core p53DB domain structure. Figure 2b depicts a schematic
representation showing the primary sequence and the sec-
ondary structure where the most relevant residues are
shown. For a full description of constraints on p53DB and
p53TR domains readers can read Arbiza et al. (2006). Here
we overview the most relevant conclusion emphasizing that
residues where denaturizing mutants are observed (Pro143,
Arg175, Gly245, Arg249, Glu258 and Arg282) (red circles), and
those involved in Zn2+ coordination (Cys176, His179, Cys238

and Cys242) (white circles) coincided with red labels, sug-
gesting that they are under strong evolutionary constraints
imposed by purifying selection. These residues are phyloge-
netically conserved in the alignment (marked by the star
symbol: ‘�’), and purifying selection (PFS) was detected on
them using SLR at 99% confidence level (marked by the
admiration symbol: ‘!’). Interestingly, residues where con-
servation is variable, relaxation of selective constraints
was deduced. In agreement with our expectations, most of
these sites are placed in the external region of the structure
(Figure 2a), outside the b strand or helix regions (Figure 2b).

In summary, there is a large agreement between the
functional relevance of residues deduced from the estima-
tion of selective constraints using ML models and the
functional or structural importance demonstrated exper-
imentally in p53DB domain (Cho et al., 1994). Moreover,
we found no evidence that residues with neutral or nearly

neutral values ofo40.30 (green labelled) play functionally
or structurally important roles in p53.

Selective constraints and mutation frequency

Evolutionary biologists maintain that natural selection
works in proportion to the number of deleterious muta-
tions occurring in the population (Kimura, 1983). Fre-
quent mutations on residues with relevant functional
biochemical roles must be targeted by purifying selection
and consequently would be expected to show the highest
selective constraints in the protein. Otherwise, sites chang-
ing under neutral or nearly neutral evolution will not nec-
essarily compromise major functional roles of the protein,
and consequently would rarely be expected to be found
associated to disease. Therefore, the pattern in the distri-
bution of mutational frequency against o values should
likely approach an ‘L-shaped’ curve. See also: Kimura,
Motoo
Using the frequency distribution of the mutations col-

lected at the IARC TP53 database and the o values com-
puted for each residue, we demonstrate that p53 residues fit
the predicted pattern described earlier (Figure 3a). As ex-
pected, disease-associatedmutational hotspots observed in
Figure 1 have shown the lowest o values (oSLR5 0,
oM840.033) observed in the study (Figure 3b) as a conse-
quence of the high evolutionary constraints imposed by
natural selection. It is interesting to emphasize that there
were no residues showing higho values (o40.3, classically
considered the minor neutral limit of selection) that also
showed a high frequency ofmutations associated to human
disease (freq40.5). Finally, according to the distribution
of the residues deduced under the influence of purifying
selection at 95% or 99% statistical confidence (red dots in
Figure 3b), we define a cutoff representing an a priori hy-
pothesis to detect residues associated to human disease.
This hypothesis suggests that residues showing o50.1 are
always under the influence of the highest purifying selec-
tion process and mutations on these sites are probably

Table 3 Summary of p53 domains, mutations and statistics according toM8 model and SLRmethod. Mutations were deduced

from the IARC TP53 database

Alignment Mutations o Statistics

Domain Codon Indels Total Mpsa Model Minimum Median Mean Maximum

TA 1–60 38 96 1.6 M8 0.030 0.334 0.379 1.747

SLR 0.000 0.269 0.369 1.865

PR 61–97 22 151 4.2 M8 0.029 0.314 0.376 1.338

SLR 0.000 0.307 0.376 1.447

DB 100–300 5 17 389 87.0 M8 0.027 0.039 0.116 1.423

SLR 0.000 0.029 0.095 2.018

TR 325–355 0 178 5.1 M8 0.028 0.067 0.126 0.456

SLR 0.000 0.068 0.103 0.379

CO 361–393 11 18 1.6 M8 0.027 0.216 0.255 0.878

SLR 0.000 0.176 0.226 0.882

aMean number of mutations per site.
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always associated to disease. Later, we show that this hy-
pothesis derived only using p53 protein data is a common
pattern observed for amino acid mutations associated to
human disease genes.

If selection has modelled o values for generations by
rejecting deleterious mutations associated to the more fre-
quent disease mutations in the population, we would ex-
pect a gradual increase in the selective constraints in p53
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Figure 2 Mapping of selective constraints in the p53DB domain. (a) The three-dimensional structure of the p53DB domain showing residues coloured

according to different selective pressures. (b) Primary amino acid sequence and secondary structure elements of the p53DB domain. Residues in red, orange,

yellow and green show the gradual distribution of the selective constraints representedbyoSLR values. Residues in red (04o50.1) and orange (0.14o50.2) are

generally associated to DNA contact sites (blue circles), Zn2+ contact (white circles) and sites where mutants are known to be denaturizing (red circles) among

others. A fewof the sites seem tobebelow the limit considered for selective constraints (yellow, 0.24o50.3). Residueswhere selective constraintswerepredicted

to be low (green,o40.3) are distributed along the external regions of the core domain, andmost of them are interspersed between b sheets and helices. Arg248

binds in the minor groove of the DNA. Ser185 was conserved in the cluster of primates and rodents, but was discarded in the analysis due to gap insertions in the

basal species. �, phylogenetically conserved residue; +, SLR detected PFS at 95% confidence after correcting for multiple testing and !, as in +, but at 99%

confidence. See text for a detailed explanation. Reproduced from Arbiza et al. (2006), Copyright Elsevier (2006).
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associated to the more common cancer mutations. Table 4

shows the total number ofmutations and themean number
of mutations per residue (numbers in bold) for the full
protein, p53DB and p53TR domains, computed according

to M8 and SLR models. In agreement with the earlier-
mentioned expectation, themean number of mutations per
site (numbers in bold) shows a gradual increase according
to the strengthofnatural selectionaccording to the increase
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on selective constraints from o40.3 to o50.1. The
pattern is consistent throughout the whole protein,
and is independent of the method used to estimate the o
values. The only exception occurred when considering the
category where 0.14 o50.2 under the SLR method,
but it seems justifiable given the low number of mutations
observed in the p53TR domain. The category where res-
idues are phylogenetically conserved (PC) showed
the highest number of mutations producing disease per
site in the full protein (120.6) which are very close
to that estimated by oSLR=0 (120.3) and oM850.033
(119.5). This result points out the relevance of PC
residues at the moment of defining amino acid sites where
mutations producing disease are frequent. Alternatively,
the SLR class of sites deducing purifying selection at 95%
and 99% of confidence seems to be the more informative
category when deducing the selective constraints imposed
on the protein since it contains all the PC residues
and shows that, in total, twice as many as those which are
PC are selectively constrained with 95% and 99% of con-
fidence. In addition, the SLR class seems to posses the
ability to detect a greater number of mutations associated
to disease per residue (87) for a greater proportion of
residues.

Selective constraints, disease and
polymorphism

In the previous sectionwe predicted thatmutations on sites
carrying selective values lower than 0.1 (o50.1) are can-
didate sites to be associated to cancer in p53. Previously we
demonstrated, using only 43 genes associated to disease,
that this is the value that maximizes the differences
(p550.001) between mutations frequently associated
and not associated to disease in humans (Arbiza et al.,
2006). Capriotti et al. (2008) suggested that disease and
polymorphisms have alternative distribution of o values.
Using a large-scale testing set coming from the Swiss-Prot
database (8987 amino acid variants, 6220 producing dis-
ease, 2767 polymorphic, in 1434 human proteins) they
found a statistically significant association between high
selective pressures and disease in contrast to low selective
pressures and neutral polymorphic variants in human
(Figure 4). These results suggest that disease-related protein
variants and polymorphisms have significantly different
evolutionary properties. The median o value for disease-
related protein variants was 0.072 lower than that for
polymorphisms. This difference, although small, is very
significant given a much larger distribution for o values of

Table 4 Cancer mutations and selective constraints

p53 Model o40.3 0.24o50.3 0.14o50.2 o50.1 SLRa oM8
b oSLR

c PCd

Full protein M8 570 382 1714 15 165

9.5 13.2 35.0 87.7

16 883 13 028 12 992 13 152

87.0 119.5 120.3 120.6

SLR 430 250 1495 15 656

8.6 11.4 25.3 87.0

M8 437 337 1669 14 814

DB 23 25.9 50.6 113.1

16 471 12 998 12 952 13 112

99.2 139.6 140.8 141.0

SLR 306 223 1436 15 292

20.4 31.9 36.8 113.3

TD M8 8 7 12 152

2.0 2.3 2.4 7.6

164 30 30 30

6.3 5 4.3 4.3

SLR 6 8 6 158

2.0 2.5 1.5 7.5

Notes: Alternative classes of constraints collect a variable number of mutations associated to cancer (from the IARC TP53 R10 database) and a
variable number of mutations per site (bold) in the protein. The increasing number of mutations per residue observed in ranges of o with higher
selective constraints (0.340.240.1) supports the hypothesis that natural selection works in proportion to the number of mutations in the
population (see text). The class of phylogenetically conserved (PC) residues collects higher number of mutations per residue (120.6 and 141.0 for
p53 andp53DB)highlighting its quality as a proxy for diseasemutations. Similar valueswere observed foroSLR andoSLR classes.However, under
the class of SLR a higher number of residues were observed associated to disease (194 and 166).
aResidues under the constraints of purifying selection evaluated by the SLR method at 95% and 99% statistical confidence.
bResidues with oM840.033.
cResidues with oSLR=0.
dResidues phylogenetically conserved throughout the p53 alignment.

Selective Constraints and Human Disease Genes

ENCYCLOPEDIA OF LIFE SCIENCES & 2008, John Wiley & Sons, Ltd. www.els.net 15



polymorphisms (p=2.2� 10216). This result seems not
only to confirmour previous prediction, but it also suggests
that this evolutionary parameter is a feasible way to dis-
tinguish disease from polymorphism.

Bioinformatics Perspectives

Improving predictions using machine
learning algorithms

Capriotti et al. (2008) have trained SVM classifiers using
disease and polymorphic data from the Swiss-Prot data-
base. Their results suggest that the application of SVMs
classifiers outperforms previous bioinformatic results try-
ing to infer disease mutations from sequence alignments
and protein sequence information alone (like SIFT or
PANTHER). See also: Bioinformatics; Neural Networks

They extend the implementation of sequence- and pro-
file-based SVMs to include codon-based estimation of
selective pressures at each position of the target sequences
with noticeable success. Themethod proposed byCapriotti
et al. (2008) (SeqProfCod, an acronym that comes from
the use of information obtained from the human protein
sequence, the profile of the alignment and codon selec-
tive pressures) achieves 82% overall accuracy, correctly
predicting approximately 4% more protein variants than
either SeqCod or SeqProf; two alternative SVMs specifi-
cally designed with sequence/codon and sequence/profile
information only (Table 5). They demonstrate the synergy
of combining two sources of information for predicting the
functional effects of protein variants: protein sequence/
profile-based information and the evolutionary estimation

of the selective pressures at codon level. They finally sug-
gest that the minimum error in the process of classification
is reached wheno=0.12, which is very close to expectation
in Arbiza et al. (2006). The results of large-scale appli-
cation of SeqProfCod over all annotated point mutations
in Swiss-Prot are available for download at http://
sgu.bioinfo.cipf.es/services/Omidios/.

Computing constraints on the complete
human genome

As was mentioned earlier, the population genetic analysis
of human SNPs constitutes one of the most powerful tools
to search for disease susceptibility genes (Collins et al.,
2003). In this framework, the predicted functional effect of
SNPs is gaining relevance as the selection criteria of alter-
native SNPs given that it constitutes a potentially relevant
factor in significantly increasing the sensitivity of associ-
ation tests (Botstein and Risch, 2003).
SNPs can be selected taking into account the evolution-

ary constraints of the region analysed along with its like-
lihood of being the causative agent of any type of damage.
The PupaSuite web server (http://pupasuite.bioinfo.
cipf.es) is a bioinformatic tool developed by Conde et al.
(2006) for the selection of SNPs with potential phenotypic
effect, specially oriented to help in the design of large-scale
genotyping projects. This tool provides theML estimation
(M8 model and SLRmethod) of the evolutionary strength
measured at a codon level for each one of the nsSNPs of the
human genome (Figure 5). Users developing small- or large-
scale genotyping analysis can select nsSNPs with high evo-
lutionary constraints (o40.12) as possible candidates to
successful experimental designs in the search for the genetic
causes of human diseases. See also: Sequencing theHuman
Genome: Novel Insights into its Structure and Function

Conclusions

Selection against deleterious mutations (purifying selec-
tion) is accepted by most evolutionists as the predominant

Table 5 Accuracy of the SVMs classifiers on the Swiss-Prot

2005 dataset

Q(M) Q(D) Q(P) C AUC

SeqProf 0.78 0.80 0.74 0.52 0.85

SeqCod 0.79 0.82 0.74 0.53 0.86

SeqProfCod 0.82 0.84 0.77 0.59 0.88

Notes: Alternative SVMs classify disease and polymorphism with
variable overall accuracy Q(M). However, when the information of
selective constraints at codon level (Cod) are considered, the
SVM increases the certainty for all the measured parameters.
Q(M)5 1/N(TP+TN), where TP and TN are true positive and neg-
ative predicted mutations and N the total number of mutations.
Q(s)5T(s)/(T(s)+F(s)),where s isD: diseaseorP: polymorphism.C is
the correlation coefficient andAUCthe area under theROCcurve that
represents the probability of correct classificationover thewhole range
of cutoffs.
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Figure 4 o�distribution, disease and polymorphism. More than 8000

amino acid mutations defined as disease and polymorphic variation in the

Swiss-Prot database are clearly differentiated by selective constraints. The

boxplot shows the median (horizontal bold line), the upper and lower

quartiles (box) and the interquartile range (dashed vertical lines). For visual

clarity a horizontal dotted line indicates o50.1.
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form of selection at a molecular level. Earlier attempts at
predicting functional consequences of nonsynonymous
mutations represent indirect approaches to evaluate the
strength of natural selection acting on polymorphic vari-
ation. Structural information alone, with or without the
assistance of protein sequence alignments, was used in
these methods as a multivariate proxy to deduce if a par-
ticular nsSNP produces a deleterious change in phenotype.
The method discussed here differs from previous ap-
proaches through the explicit definition of the selective
strengths occurring at a codon level. Codon-based ML
models employed heremake use of a number of parameters
representing the more frequent and the more conserved
changes occurring in the sequences during evolution. In
this article we describe how an evolutionary parameter
modelling biological sequences during millions of years al-
lows to distinguish amino acid residues where human dis-
ease is frequent. This parameter allows differentiating
significantly different distributions for disease and poly-
morphism. We hypothesize that nonsynonymous changes
on amino acids showingo50.1 probably affect the normal
function of proteins. The computation of this evolutionary
parameter on all the coding sequences of the genome pro-
vides us with an a priori hypothesis of the phenotype effect
of all the nsSNPs in the human genome.
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