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Abstract 

This chapter overviews the combination of different data sources and techniques for 

improving functional prediction. Key concepts, requirements and approaches are 

introduced. It discusses two main strategies: a) Integrative data analysis and 

visualisation approaches with an emphasis on the processing of multiple data types or 

resources; and b) integrative data analysis and visualisation approaches with an 

emphasis on the combination of multiple predictive models and analysis techniques. It 

also illustrates problems in which both methodologies can be successfully applied.  
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3.1 Integrative data analysis and visualisation: Motivation and approaches 

The combination of multiple data sources is both a fundamental requirement and 

goal for developing a large-scale and dynamic view of biological systems. Data 

originating from multiple levels of complexity and organisation are interrelated to 

assess their functional predictive abilities. For instance, quantitative relationships 

between gene expression correlation and protein-protein interaction, gene and protein 

expression correlation have been studied (Allocco, Kohane, and Butte, 2004). Typical 

questions addressed by such studies include: Is there a significant connection between 
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highly expressed genes and highly expressed proteins? Is the expression correlation 

exhibited by a pair of genes significantly associated with the likelihood of finding 

their products in the same protein complex? These quantitative relationships support 

the design of prediction models to facilitate functional classification and 

interpretation. In a post-genomic scenario the possibility of answering functional 

questions on one-gene-at-a-time bases is being abandoned in favour of more systemic 

approach in which the accuracy of the individual result is sacrificed at the exchange 

for a more deep knowledge on how the different parts of the whole system interact 

among them to play different biological roles. Thus, function is starting to be 

understood as a more complex concept within systems biology than the naïve 

adscription of a given activity or role to a single protein. 

A massive collection of computational and statistical techniques are available to 

analyse and visualise different types of “omic” information. The most important 

computational question is not whether there are options for a particular problem. 

Rather, bioinformaticians are becoming more concerned about questions such as: how 

to combine different techniques? When? Why? 

The combination of multiple prediction models is fundamental to address 

limitations and constraints exhibited by individual approaches. Moreover, their 

integration may improve the accuracy, reliability and understandability of prediction 

tasks under different experimental and statistical assumptions and conditions. For 

example, it has been demonstrated that the combination of multiple, diverse 

classification models may significantly outperform the prediction outcomes obtained 

from the application of individual classifiers (Kittle, Hatef, Duin, and Matas, 1998). 

Thus, model diversity is a crucial factor to achieve multiple-views of the same 

problem, reduce bias and improve the coverage of the prediction space. Diversity may 



be obtained not only through the application of multiple models, but also though the 

implementation of different methods for selecting data, features and prediction 

outcomes. 

In general two major computational categories of integrative data analysis and 

visualisation approaches may be identified: a) Those approaches that place an 

emphasis on the processing of multiple data types; and b) those approaches that rely 

on the combination of multiple predictive models and analysis techniques. The first 

approach may of course apply multiple predictive computational models, but its main 

goal is to combine different types of biological data sets in order to improve a 

prediction task or to achieve a more complete, dynamic view of a biological problem. 

An example of this type of approach is the combination of expression, cellular 

localization and protein interaction data for the prediction of protein complex 

membership. Although the second approach may (or may not) process different types 

of data, its main objective is to implement different statistical and/or machine learning 

models to improve predictive quality. One example is the combination of several 

clustering algorithms, including neural networks, to improve accuracy and coverage 

in the functional characterisation of genes based on microarray data.  

This chapter discusses these two main data analysis and visualisation problems by 

providing an overview of recent key investigations and applications for functional 

genomics. It also illustrates problems in which both methodologies can be 

successfully applied.  

 

3.2 Integrating informational views and complexity for understanding function 

The organisational modules of the cell may be divided into several types of 

“omic” information. For example, the transcriptome refers to the set of information 



transcribed from coding sequences, which is defined by their expression patterns. The 

interactome specifies the existing interactions between molecules in the cell, 

including protein-protein and protein-DNA interactions. The reader is referred to (Ge, 

Walhout, and Vidal, 2003) for a discussion on the classification of “omic” 

approaches. 

Information originating from each “omic” approach may be incomplete, incorrect 

or irrelevant. Their predictive quality and usefulness may be significantly 

compromised by the presence of several false negatives and false positives. Each data 

source offers a different, partial view of the functional roles of genes and proteins. But 

also they may generate overlapping views of the same problem. Therefore, their 

integration may provide the basis for more effective and meaningful functional 

predictors. Moreover, it may support the generation and validation of new hypotheses. 

For instance, if method A suggests that gene product X interacts with gene product Y, 

it would be then important to apply other methods to assess the relevance or validity 

of this interaction. Phenotypic information describing the essentiality of these genes 

together with their expression patterns may aid in the identification of their 

participation in common biological pathways or related functions. Thus, these 

putative roles may reflect the relevance of this interaction.  

An integrative prediction process aims to exploit the existing quantitative 

relationships between different “omic” data sets. These relationships may indicate the 

type of constraints and integration mechanisms that need to be defined. Thus, for 

instance, an important problem is to investigate how different data sets are statistically 

correlated. In some applications is important to assess the significance of such 

relationships with respect to relationships detected from random data sets. Advances 

in this area include techniques to describe how gene expression correlation and 



interactome data are interrelated in S. cerevisiae. Several correlation measures, such 

as the Pearson coefficient and the cosine distance, may be used. A typical strategy 

consists of depicting the distribution of expression correlation values for interactome 

data sets, which may be compared with the distribution obtained from random protein 

pairs (Ge et al., 2003).  These comparisons indicate, for example, that interacting 

proteins are more likely to be encoded by genes strongly correlated by their 

expression profiles (Jansen et al. 2003). Another technique consists of plotting the 

likelihood of finding two proteins in the same protein complex as a function of their 

expression correlation coefficients (Jansen, Greenbaum, and Gerstein, 2002). The 

validity of this methodology for detecting transcriptome-interactome relationships in 

multi-cellular organisms requires further investigation. For instance, it has been 

suggested that these relationships can be observed in C. elegans at least for particular 

types of tissue (Walhout et al., 2002). 

This data visualisation procedure may be easily extended to estimate other 

functional properties, such as the likelihood of finding pairs of genes regulated by a 

common transcription factor on the basis of their gene expression correlation.  It has 

been shown that pairs of genes with significantly correlated expression patterns are 

much likelier to be bound by a common transcription factor, in comparison to those 

pairs exhibiting weaker expression correlations (Allocco et al., 2004).  

Interrelationships between interactome and phenome, transcriptome and 

translatome, and transcriptome and phenome have also been studied (Ge et al., 2003). 

Such associations may motivate different interpretations, which sometimes may be 

specific to particular organisms or functional roles. But which may be reconciled and 

integrated to formulate hypotheses or to support the development of more effective 



prediction models (Ge et al., 2003). Figure 3.1 illustrates typical plots for visualising 

potential significant relationships between different ‘omic’ properties. 

 

 

 

 

  

 

 

 

Figure 3.1. Typical plots used to identify relevant relationships between different 

“omic” data sets (hypothetical examples). (a) Displaying relationships between the 

proportion of interacting proteins (Prop_interact) versus their correlation coefficients. 

(b) The likelihood of finding two proteins in the same complex (L_SC) versus their 

correlation values.  (c) The proportion of pairs of genes bound by a common 

transcription factor (Prop_cTF) versus their correlation.  

  

Once potential relationships have been identified, models may be built to combine 

evidence or prediction outcomes derived from different data sources. Several machine 

learning methods, such as decision trees and neural networks, may be applied to 

implement this task. For instance, integrative models based on Bayesian networks 

have been applied to predict protein-protein interactions in yeast. One recent advance 

(Jansen et al., 2003) reported the integration of different types of experimental 

interaction data, functional annotations, mRNA expression and essentiality data to 

improve the identification of protein-protein interactions. One important advantage 
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shown by probabilistic frameworks is that they provide an assessment of the 

predictive relevance and reliability of each integrated source. They are useful to deal 

with different types of data and missing values. Moreover, relationships between 

sources are expressed in terms of conditional probabilities, which in many 

applications facilitate the interpretation of results. One limitation is that these models 

often require the user to make strong assumptions about the independence of the 

information sources, which may not be easy to justify or accurate to generate reliable 

predictions.  

Integrative data analysis approaches are also fundamental tools for refining or 

adapting other systemic models such metabolic networks (Ideker et al., 2001). In this 

case different types of data, such as mRNA expression, protein expression and 

physical interaction data may be used to measure responses to systematic 

perturbations. Data clustering techniques and correlation visualisation tools (including 

those discussed above) may be applied to summarise these responses and their 

associations with functional roles or processes.  

One important problem that requires further research is the development of 

methods to visualise not only different information sources, but also multiple analysis 

outcomes. These techniques should support both interactive and iterative tasks. A key 

limitation, which was discussed in the Chapter 1, is that the areas of data analysis (or 

data mining) and visualisation have traditionally evolved as separate disciplines. 

Typical information visualisation tools have been designed to process single data 

sources. Moreover, they have put emphasis on the problem of displaying final 

analysis outcomes, without providing more hierarchical, multi-resolution views of 

prediction processes. Thus, an integrative data visualisation approach is necessary not 



only to complement integrative data analyses, but also to make them more 

meaningful.  

Information visualisation platforms currently available allow researchers to merge 

multiple data sources to highlight relevant relationships, such as those represented in 

regulatory networks (Baker, Carpendale, Prusinkiewicz, and Surette, 2002).  

Regulatory networks may be, for instance, displayed together with other types of 

information such as gene expression correlation and interaction information. Different 

experimental methods or relationships may be represented by using colour coding 

schemes associated with the nodes and edges in the network.  

Integrative visualisation tools should provide multiple graphical and analytical 

views of other organisational levels or “omic” sources, including pathways and 

functional annotations. The VisAnt platform is one of such options (Hu, Mellor, Wu, 

and DeLisi, 2004), in which metabolic data, gene homology, annotations and cross-

referencing information of genes and proteins are integrated. One important challenge 

for this type of research is to support a flexible, open and integrated display of 

heterogeneous information sources and analysis outcomes. In this direction, ambitious 

projects of genome browsers such as the Ensembl (Birney et al., 2004) with tools for 

such as EnsMart (Kasprzyk et al., 2004) allows easy integration of different types of 

information in a genomic context and with the possibility of cross-genome 

comparisons. Similar tools are the NCBI’s Map viewer or the UCSC genome browser. 

All these tools incorporate genomic information and make it available through 

friendly web browsers. 

A fundamental condition to achieve an integrative data analysis and visualisation 

paradigm is the ability to integrate diverse outcomes originating from the application 

of multiple prediction models.  



 

3.3 Integrating data analysis techniques for supporting functional analysis 

One important characteristic exhibited by the models introduced above is that they 

combine multiple data sources by mainly applying only one type of prediction model, 

such as a single classification technique. An alternative integrative prediction 

approach may also take advantage of the diversity of available prediction models and 

techniques. It has been demonstrated that different techniques can unveil various 

aspects of different types of data such as gene expression data (Leung and Cavalieri, 

2003). The combination of diverse models can overcome the dependency on problem- 

or technique-specific solutions. 

One such integrative approach is known as Multisource Association of Genes by 

Integration of Clusters, which was proposed by Troyanskaya and co-workers 

(Troyanskaya, Dolinski, Owen, Altman, and Botstein, 2003). It applies probabilistic 

reasoning and unsupervised learning to integrate different types of large-scale data for 

functional prediction. The system has been tested on S.  cerevisiae by combining 

multiple classification techniques based on microarray, physical and genetic 

interactions and transcription factor binding sites data. An assessment of functional 

prediction relevance in yeast has been performed by processing Gene Ontology 

annotations derived from the S. cerevisiae Genome Database. The inputs to the 

integrative probabilistic prediction framework may consist of clustering-driven 

predictions based on gene expression correlation and other functional relationships 

between pairs of gene products. This framework allows, for instance, the combination 

of classification outcomes generated by several clustering techniques such as k-

means, self-organising maps and hierarchical clustering. The system estimates the 

probability that a pair of gene products is functionally interrelated. Such a relationship 



is defined by their involvement in the same biological process, as defined by the Gene 

Ontology.  This approach clearly demonstrates how an integrative approach may 

outperform single-source prediction techniques, such as models based solely on 

microarray data. Moreover, it highlights the advantages of combining multiple 

classification methods. Troyanskaya further discusses this integrative framework and 

its applications in Chapter 11. 

Other authors, such as Wu et al. (2002), have showed the importance of applying 

multiple clustering methods to discover relevant biological patterns from gene 

expression data. This type of models aims to integrate classification outcomes 

originating from several clustering methods such as: Hierarchical clustering, k-means, 

and self-organising maps. One important assumption is that these methods may 

produce partially overlapping expression clusters. Multiple partitions may be obtained 

by running different clustering algorithms using several learning parameters or 

numbers of clusters. Without going into details, a functional class prediction derived 

from a clustering experiment may be associated with a probability value, P. It 

estimates the possibility that a cluster of genes was obtained by chance and allows 

assigning a gene to multiple functional categories. Thus, integrative predictions are 

made on the basis of the minimum P-value exhibited by a category in a cluster.  The 

computational predictions and experimental validation performed by Wu et al. further 

demonstrate the importance of integrating several machine learning and statistical 

methods to improve biological function predictions based on a single data source. One 

key advantage of combining multiple clustering-based prediction outcomes is that it 

allows the association of multiple, reliable functional predictions to a gene product 

based on a probabilistic framework. Clusters may be automatically linked to 

significant functional categories by processing a reference knowledge base, such as 



the Gene Ontology. The implementation of tools for automatically annotating clusters 

is a fundamental problem to achieve integrative data analysis goals. In Chapter 7, Al-

Shahrour and Dopazo will discuss the problem of assigning significant functional 

classes to gene clusters based on Gene Ontology annotations. Figure 3.2 summarises 

basic tasks required in a clustering-driven integrative framework for predicting 

functional classes. 

In Chapter 10 Sheng and co-workers review several clustering techniques and 

methods for assessing the statistical quality of clusters. Different statistical methods 

may be combined to support the evaluation of clusters in terms of their significance, 

consistency and validity. This is a problem that deserves more attention and 

investigation in order to improve the design and interpretation of functional genomics 

studies, especially those analyses based on gene expression clusters. For instance, the 

application of null hypothesis tests, internal and external validity indices may be 

applied to select relevant, significant partitions and clusters. The estimation of the 

“correct number of clusters” represented in a dataset is a complex task, which may 

strongly influence the products of a predictive analysis process. These tests may be 

used for: a) providing evidence against the hypothesis: “there are no clusters in the 

data” (null hypothesis tests); b) for finding the optimal partition on the basis of several 

inter- and intra-cluster distances (internal validity indices); or c) for assessing the 

agreement between an experimental partition and a reference partition (external 

indices). The experimental partition is the partition under study, while the reference 

dataset may be a partition with a priori known cluster structure.  Bolshakova and 

Azuaje (2003) have proposed strategies to integrate the outcomes originating from 

multiple cluster validity indicators, which may be used to generate more reliable and 

robust predictions about the correct number of clusters.    



 

 

 

 

 

 

 

 

 

Figure 3.2. Clustering-based integrative prediction framework: Basic tasks and tools. 

Different, partially overlapping partitions are generated by implementing different 

clustering techniques, based on different learning parameters and numbers of clusters. 

Probabilistic assessment about the significance of clusters in relation to functional 

categories is required for automatically labeling clusters and assigning classes to 

genes. 

 

3.4 Final remarks 

The goal of integrative data analysis and visualisation is not only to increase the 

accuracy and sensitivity of functional prediction tasks, but also to achieve better 

insights into the problems under consideration. Even when this type of approaches has 

become of great importance in genomics and proteomics, the problem of combining a 

wide variety of information to form a coherent and consistent picture of functional 

prediction problems has lagged.  Moreover, current advances combine different types 

of data relying on the application of a single prediction model (Zhang, Wong, King, 

and Roth, 2004), which often are based on strong assumptions about the statistical 
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independence or distribution of the data under study (Jansen et al. 2003). To fully 

exploit integrative data and visualisation there is a need to process data derived from 

different sources. Similarly, it is fundamental to combine diverse predictive views 

originating from multiple classifiers or prediction models. Furthermore, it is crucial to 

continue studying relationships between apparently unrelated data, which may 

provide the basis for novel prediction information sources and models to be 

integrated.  

Sections 3.2 and 3.3 overviewed two key strategies to perform integrative data 

analysis and visualisation in functional genomics. Within such an integrative 

framework it is also possible to define problems, methods and applications according 

to: a) the type of data integration, and b) the level in which predictive model 

integration is achieved.  

According to the type of data integration, integrative approaches can be 

categorised as follows.  

Redundant information integration approaches:  These approaches process 

information provided from a group of sources that represent the same type of 

functional data, e.g: expression data, but with a different degree of accuracy or 

confidentiality. Applications may be based on the integration of replicated sources 

that measure similar properties, but which may be noisy, inaccurate or subject to 

statistical variations (Edwards et al., 2002).  They generally aim to reduce the overall 

uncertainty and increase the predictive accuracy.  

Complementary information integration approaches:  These approaches integrate 

information from sources that represent different variables or properties of the 

prediction problem under consideration. Complementary information integration aims 

at combining partial, incomplete and noisy information to get a global picture of the 



prediction problem domain. One typical example is the combination of expression and 

interaction data sets to predict complex membership. Multiple sources provide 

information that may be not perceived by using individual experimental methods.  

According to the level in which information integration is performed, problems 

and applications can be categorised as follows. 

Integration at the level of input representation: Information provided from the 

sources is fused before performing prediction or classification tasks.  This process 

may be implemented by integrating in a unique input feature vector the attribute 

values that represent the different variables under study. For instance, Zhang et al. 

(2004) grouped several gene- and protein-pair properties into a single binary feature 

representation to predict co-complexed pairs in S. cereivisiae based on decision trees.  

Integration at the level of feature pre-processing: In this case the product of 

different feature filtering or selection procedures applied to an information source is 

combined before performing a classification task. Based on a combination of several 

feature selection schemes, including signal-to-noise ratio and an evolving 

classification function technique, Goh et al. have recently introduced a hybrid feature 

selection method to improve classification of gene expression data (Goh, Song, and 

Kasabov, 2004). This study highlighted the advantages of a hybrid, integrative 

method for gene selection.  

Integration at the level of classification: Information provided from different 

sources or prediction models is processed independently, their prediction outcomes 

are generated, and then integrated in order to make a final prediction about the 

functional problem under consideration. One example from this category is the 

integration of serial and parallel competitive classifiers such as ensembles of neural 

networks and decision trees (Tan and Gilbert, 2003; Hu and Yoo, 2004). 



The application of integrative data analyses at the pre-processing and 

classification levels based on different types of functional data deserves further 

investigation. It may offer powerful tools not only to improve predictive quality 

(accuracy and coverage), but also to support the generation of more comprehensive 

studies at a systems level.  

As a final caveat, it is important to remark that, while on one hand the 

overabundance of data can fuel our understanding on the living systems, on the other 

hand, the possibility of observing expurious associations between genes and 

functional properties due to pure chance cannot be neglected. It is necessary then to 

establish a rigorous framework for the analysis of data at gnomic scale. 
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